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Abstract. We show that the emergence of criticality in the locally-defined Bak-Sneppen model corresponds
to separation over a hierarchy of timescales. Near to the critical point the model obeys scaling relations,
with exponents which we derive numerically for a one-dimensional system. We further describe how the
model can be related to the glass model of Bouchaud (J. Phys. I France 2, 1705 (1992)), and we use this
insight to comment on the usual assumption of stationarity in the Bak-Sneppen model. Finally, we propose
a general definition of self-organised criticality which is in partial agreement with other recent definitions.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion –
05.65.+b Self-organized systems – 45.70.Ht Avalanches

1 Introduction

The concept of self-organised criticality or SOC was origi-
nally devised by Bak, Tang and Wiesenfeld as an explana-
tion for the apparent ubiquity of scale invariant systems
in nature [1–6]. Working on the assumption that such
systems are ‘critical’ in the sense of a continuous phase
transition, Bak et al. proposed the existence of a class of
non-equilibrium models that become critical purely under
their own dynamics. This contrasts with other equilibrium
and non-equilibrium systems, where at least one control
parameter must be set to a particular value before the
critical state is attained [7,8], which seems unlikely in the
absence of human intervention. Despite these early claims,
it soon became clear that many SOC models do in fact re-
quire parameter tuning, but they had been defined in such
a way that the tuning had been carried out implicitly. For
instance, the sandpile model, which is the canonical SOC
system, is usually described in a way that implicitly as-
sumes an infinitesimal driving rate; for finite driving, the
model is no longer critical [9,10]. The admission of implicit
parameter tuning has allowed the sandpile model to be re-
lated to more conventional non-equilibrium systems, and
for analytical techniques previously established in other
fields to be employed (see e.g. [11–13])

Recently, attention has focused on implicit param-
eter tuning in a subclass of SOC systems known as
extremal dynamical systems, so-called because they are
driven at the location of the minimum (or maximum)
of some spatially varying quantity [14,15]. It has al-
ready been observed independently by Sneppen [16] and
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Vergeles [17] that the Bak-Sneppen model, which is the
simplest and perhaps best understood extremal dynam-
ical system [14,18,19], implicitly assumes that a single
temperature-like parameter is set arbitrarily close to zero.
However, in our view the mechanism underlying this pro-
cess was never clearly identified, nor was the inevitability
of the parameter tuning properly stressed.

The aims of this paper are fourfold. Firstly, we attempt
to provide as clear an explanation as possible that im-
plicit parameter tuning in the Bak-Sneppen model, rather
than just being possible, is in fact inevitable if one is to
have a well-defined physical system. By ‘well-defined’ we
mean that each element evolves according to the state
of only a finite number of other elements, as opposed to
the global driving rule in the model’s original invocation.
This relates to recent work on the sandpile model [9],
but was never properly discussed in the previous work on
this model [16,17]. Note that throughout this paper we
follow [9] in refering to the setting of a parameter to zero
as ‘fine tuning,’ although it could be argued that this is
just an absolute separation of temperature scales rather
than genuine fine tuning. Secondly, we identify the funda-
mental mechanism underlying this process to be a hierar-
chy of timescales that diverge relative to each other, which
is similar but qualitatively different to the separation of
timescales required in other SOC models [20]. Thirdly, we
show that the model can be related to a phenomenological
glass model of Bouchaud [21], and argue that the Bak-
Sneppen model does not reach a statistical steady state in
low dimensions, in contrary to the widely held belief that it
reaches stationarity after an ‘extensive transient’ [18]. Fi-
nally, we use the insight gained from our work to propose
a new way of categorising self-organised criticality, and
comment on its relationship with other recent definitions.
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This paper is arranged as follows. In Section 2 we
carefully reconstruct the Bak-Sneppen model from first
principles, and show how a properly defined model with
only local interaction rules demands implicit parameter
tuning, as in the sandpile model [9]. In Section 3 we show
that at finite temperatures the model can be related to
a simple glass model, and argue that even at its critical
point, the model does not reach a steady state. A mean
field description similar to that adopted by Bouchaud is
described and solved in Section 4, and we comment on the
true meaning of self-organised criticality Section 5.

2 Reconstruction of the Bak-Sneppen model

We begin by reconstructing the Bak-Sneppen model from
first principles, following the original arguments in [18].
Although some aspects of this have already been touched
upon [16,17], the emphasis here is to demonstrate ut-
terly unambiguously that the implicit parameter tuning
is unavoidable, rather than just possible.

The local Bak-Sneppen model is defined as follows.
The system consists of N elements, each of which is as-
signed a barrier Ei , i = 1 . . .N . In the model’s original bi-
ological context the Ei represent fitness barriers, but they
could just as easily correspond to energy barriers on a po-
tential energy landscape, for example. The values of the
barriers are drawn from the time-independent prior distri-
bution ρ(E), which is assumed to have no delta-function
peaks so that there is a vanishing probability of two dif-
ferent elements having the same value of E. The sys-
tem evolves according to two rules. Firstly, each element
becomes activated at a rate

e−Ei/T , (1)

where the constant parameter T > 0 has the same units
asE. An activated site i is assigned a new barrierEi drawn
from ρ(E), corresponding to a shift to a new metastable
state with a new barrier height. Note that the activation
rate for any given element is independent of the state
of the rest of the system, so that this activation rule is
strictly local.

Secondly, for every activated element, another z are
chosen and also assigned new barrier values. This interac-
tion term mimics some form of strong coupling between
the elements, in the sense that one element changing state
drastically alters the barriers of z other elements. The
way in which the z interacting elements are chosen de-
pends upon the spatial structure of the system. If the el-
ements are arranged on a regular lattice, then the most
common rule is to update the barriers of all of the near-
est neighbours of the activated element. Hence z is just
the lattice coordination number. Alternatively, the z in-
teracting elements may be chosen at random from the re-
maining N−1, with the connections between the elements
being randomised anew for every activation event. In this
case the system has no spatial structure and the symbol
K has often been used, where K = z + 1 [22,23].

The system behaviour changes qualitatively as the sin-
gle parameter T > 0 is varied. These different regimes are
discussed in turn below.
T → 0+: In the limit of infinitesimal T , the activation
rates e−Ei/T for different Ei diverge relative to each other.
That is, the element with the smallest barrier will become
active on one timescale, the one with the second smallest
barrier becomes active on another, much longer timescale,
and so on. Thus with probability one the first element to
become active will be that with the smallest barrier (which
is always unique for a finite set of non-degenerate {Ei}).
This is the way in which the Bak-Sneppen model is
usually defined; indeed, this “exponential separation of
timescales” [18] was originally used to justify the extremal
dynamics. Although separated timescales arise in other
SOC models [20], to our knowledge this is the first time a
hierarchy of timescales has been explicitly demonstrated.

T small but finite: The strict separation of timescales is
lost for finite T and every element has a non-vanishing
probability of being the first to become active, so the dy-
namics are no longer extremal. We now demonstrate that
the model is not critical in this regime. This claim is sup-
ported by the results of numerical simulations described
below, which in turn are supported by mean field analysis.

Let pi denote the probability that element i becomes
active before any other element in the system. Since the
time until activation follows an exponential distribution
with mean eEi/T , it is straightforward to show that

pi =
e−Ei/T∑N
j=1 e−Ej/T

, (2)

which obeys
∑N
i=1 pi = 1. In this notation, the T → 0+

limit corresponds to pi∗ → 1 for the element i∗ with
the smallest barrier, and pj → 0 for all j 6= i∗. However,
0 < pi < 1 for all i when T is finite.

The algorithm employed in the simulations was as fol-
lows. N elements were placed on a one-dimensional lattice
with periodic boundary conditions. Each element was ini-
tially assigned a barrier drawn from the uniform prior dis-
tribution ρ(E) = {1 for 0 ≤ E ≤ 1, 0 otherwise}, although
we expect the same qualitative behaviour for other ρ(E).
For every iteration step, a single element was made ac-
tive according to the probabilities pi given in (2). The
active element and both of its nearest neighbours were
then assigned new barriers, so the number of interacting
elements z = 2 here. The timescale t was normalised to N
activations per unit t, which differs from the usual Bak-
Sneppen timescale only by the constant factor N . Distri-
butions were not measured until the mean barrier height
〈E〉 = 1

N

∑N
i=1 Ei appeared to reach a steady value when

plotted against log10 t. Note that this is not a rigorous
criterion for convergence and we cannot rule out the pos-
sibility that long-range spatial correlations may still be
growing.

To decide whether or not the system is critical for any
given value of T , we employed the usual method of extract-
ing the spatial and temporal correlations from the simula-
tions and checking to see if their tails are consistent with
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Fig. 1. Log-log plot of the distribution of the jump size |x|
between successive active sites for an N = 104 ring. From bot-
tom to top on the right hand side, the lines refer to T → 0+

(thick line), 0.001, 0.002, 0.005, 0.01, 0.02 and 0.05 (thin lines),
respectively. The thick line has a slope of −3.20 ± 0.05. (In-
set) The mean barrier 〈E〉 against log10 t for T = 0+ (thick
line), 0.01, 0.02, 0.03, 0.04 and 0.05 (thin lines, top to bot-
tom). Each unit t corresponds to N activations. Data collection
commenced at log10 t = 4 in this and all subsequent figures.

a power law fit. Apart from complications arising due to fi-
nite size effects, anything other than power law behaviour
signifies a characteristic scale and a non-critical system. A
convenient measure of spatial correlations for this model
is the number of lattice sites between two successive active
elements. The distribution of these ‘jump sizes’ |x| for dif-
ferent T are plotted in Figure 1. For T → 0+ we find that
Pjump(|x|) ∼ |x|−π with π = 3.20± 0.05, in accord with
the known value 3.23± 0.02 [14]. However, Pjump(|x|) lev-
els out at a constant T -dependent value Pjump(∞) ∼ A(T )
for finite T , indicating that the system is not critical.
As demonstrated in Figure 2 for an N = 104 system,
A(T ) ∼ Tα with α = 3.0± 0.2, showing that the critical
point is indeed at T → 0+. This is consistent with the re-
sults of Sneppen [16], but our data appears to be much
smoother, allowing for a more precise evaluation of the
exponent.

The temporal correlations are quantified by Pret(t),
the distribution of times t since the currently active site
was last active, which is plotted in Figure 3. Again the
data for finite T is clearly not power law, and further-
more the data for small T obeys a scaling function of the
form Pret(t) ∼ t−αψ(T β t) with ψ(y)→ (const) as y → 0,
with the exponents α = 1.58± 0.01 and β = 3± 0.1, as
demonstrated in the inset of Figure 3.

We interpret the loss of criticality for finite T as fol-
lows. For T → 0+ the location of the active site jumps
around the system in the highly correlated manner char-
acteristic of the critical state. By contrast, when T is finite
there is a non-zero probability that elements arbitrarily
far from the active site will become activated at the next
time step. Thus the active site can make large jumps to
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Fig. 2. Log-log plot of the limiting value lim|x|→∞ Pjump(|x|)
as a function of T for N = 104. The dashed line has a slope
of 3.
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Fig. 3. Log-log plot of Pret(t), the distribution of times since
the currently active site was last active, for different T on an
N = 104 ring. From bottom to top in the middle of the graph,
the lines refer to T → 0+ (thick line), 0.001, 0.002, 0.005, 0.01,
0.02 and 0.05 (thin lines), respectively. The thick line has a
slope of −1.58±0.02. (Inset) Scaling plot of t1.58Pret(t) against
T 3t for T = 0.001 (solid line), 0.002 (dotted line) and 0.005
(dashed line).

uncorrelated regions of the system, which we relate to the
loss of criticality.

T = O(Ē): Although there is no longer any question of
criticality far from T = 0+, it is possible to relate the
model to a glass model for finite T . This will be discussed
fully in Section 3.
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T → ∞: In this limit, every element has the same
activation probability pi = 1/N independent of Ei , so
P (E, t) ≡ ρ(E) for all t.

3 Mean field analysis

In this section we show how the results from the one-
dimensional simulations are in qualitative agreement with
the solution to the mean field model. The mean field model
described here is essentially that of Bouchaud et al. with
an extra interaction term [25].

Let P (E, t)dE be the proportion of barriers in the
range [E,E + dE). By adopting the usual mean field
simplification of random nearest neighbours, it is then
straightforward to show that P (E, t) evolves in time
according to [26]

∂P (E, t)
∂t

= − e−E/T∫∞
0 e−E′/TP (E′, t) dE′

P (E, t)

−z P (E, t) + (z+1)ρ(E) . (3)

This equation can be justified by noting that P (E, t) de-
creases when an element changes its barrier value, which
occurs either when it becomes active, or when it is selected
as one of the z interacting elements. These two processes
are described by the first and second terms on the right
hand side of (3), respectively, where the prefactor to the
first term is just the continuum analogue of (2). Conser-
vation of probability is ensured by the third term, which
corresponds to the z + 1 new barriers drawn from ρ(E).
We note that the treatment of Veregles is similar [17] but
with a poorly defined timescale, resulting in factors of N
remaining even after taking the continuum limit.

We have solved (3) for the uniform ρ(E) in the limit
t→∞. The expression for general T is not very instruc-
tive, but for small T it simplifies to

P (E,∞) ≈ z + 1
z

(
1 + e−(E−Ec)/T

)−1

, (4)

with Ec = 1
z+1 . As T → 0+ the exponential in (4) either

blows up or decays depending on whether E is less than or
greater than Ec , respectively. Thus P (E,∞) converges to
the step function z+1

z θ(E −Ec), in accord with the known
solution of the mean field Bak-Sneppen model [17,22–24].
However, there is no such discontinuity for finite T and
P (E,∞) is smoothly varying for all 0 < E < 1, in quali-
tative agreement with the simulation results in Figure 4
(although note that Ec is larger in the one-dimensional
case). Note that (3) can also exhibit glass-like behaviour
for T < 1, as fully described in [26].

4 Glassiness and the assumption
of stationarity

Although the model studied here was described as the
Bak-Sneppen model extended to finite temperatures, it
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Fig. 4. The barrier distribution P (E) for the same runs as in
Fig. 1. From top to bottom on the right hand side, the lines
refer to T = 0+ (thick line), 0.01, 0.02, 0.03, 0.04 and 0.05
(thin lines), respectively. (Inset) The corresponding mean field
predictions from (4), with z = 2.

can equally be viewed as the simple glass model of
Bouchaud with an extra interaction term [21,25–27]. The
mapping to Bouchaud’s model is achieved by the two stage
process of first ‘switching off’ the interactions, i.e. setting
z = 0, and then mapping to a timescale τ which obeys

∂t

∂τ
=
∫ ∞

0

e−E
′/TP (E′, t) dE′. (5)

The mean field equation (3) then becomes

∂P (E, τ)
∂τ

= −e−E/TP (E, τ)

+ ρ(E)
∫ ∞

0

e−E
′/TP (E′, τ) dE′, (6)

which is the master equation to Bouchaud’s model [27].
This alternative interpretation becomes particularly rel-
evant for values of T comparable to the expected bar-
rier height Ē ≡

∫
Eρ(E) dE, as it is in this regime that

Bouchaud’s model predicts a glass transition for a certain
class of ρ(E).

Since we have already described the relationship be-
tween these two models in some detail elsewhere [26], we
will not repeat those results here. However, it highlights
what may be a very serious problem common to almost all
previous treatments of the Bak-Sneppen model. In short,
we believe there is already sufficient evidence that the
Bak-Sneppen model does not reach a statistical steady
state, just as Bouchaud’s model does not reach stationar-
ity for low temperatures. Clearly this is contrary the the
widely held assumption that it does, so this point merits
further discussion.

It is widely known from glass theory that, to truly test
a system’s stationarity, it is not sufficient to measure func-
tions of only one time variable. Instead one must measure
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a two-time correlation function C(t+tw, tw), which is some
measure of correlation between the state of the system at
times tw and tw + t, and show that it does not depend on
the waiting time tw for large tw [28,29]. Within the current
context, almost all of the data commonly recovered from
simulations of the Bak-Sneppen model (critical exponents,
P (E, t), etc.) are all functions of at most one time vari-
able. For example, simply observing that P (E, t) appears
to approach a limiting distribution P∞(E) does not show
that the system has become stationary. Nonetheless it ap-
pears that criteria similar to this are usually employed to
check for a statistical steady state.

To our knowledge, there has only been one instance
when two-time correlations have been actively searched for
in the Bak-Sneppen model, and this is the numerical work
of Boettcher and Paczuski in one and two dimensions [30].
Remarkably, they found that the system behaviour clearly
depends on tw for all tw they measured. This situation is
commonly referred to as aging and is a clear indicator
of non-stationarity (ie. loss of time translational invari-
ance). That aging implies non-stationarity is trivial; the
only question that remains is, are Boettcher et al.’s re-
sults asymptotic, or is stationarity recovered at some very
late time τ which is beyond attainable simulation times?
Clearly this can never be answered by numerical simula-
tions alone and some form of analytical treatment would
be desirable. However, we have shown elsewhere that the
mean field model does not exhibit aging [26], so analysis
would have to limited to the difficult case of finite dimen-
sional systems. This is an important issue whose resolution
may help guide attempts to find an exact solution to the
model, and further work would be desirable.

5 Discussion and summary

It has been suggested in [9] that SOC systems correspond
to absorbing state phase transitions reached in the limit
of infinitesimal driving. Although this is almost certainly
true, in our view this only explains why SOC systems are
critical, not why they are self-organised. That is, it does
not address, in sufficiently general terms, how a model
can be placed at a particular point on its phase diagram
without explicit parameter tuning. Note that this is a sep-
arate issue as to whether or not the point also happens
to be a critical point. An alternative definition of SOC
has addressed the self-organising process on more general
terms [31,32], but gives little insight into what class of
systems need to be critical to reach a statistical steady
state.

In light of the work presented in this paper, we now
propose a broad definition of SOC that is relevant to the
phase diagram approach adopted in [9] and throughout
this paper. We suggest that SOC corresponds to that class
of models that have a critical point at a privileged point on
their phase diagrams. By ‘privileged’ we mean any point
at which every parameter takes a value that has some spe-
cial physical significance. For instance, a positive definite

parameter such as the rate of driving or temperature has
two privileged values, 0+ and ∞, and indeed all implicit
tuning identified thus far do seem to require infinitesimal
driving or temperature [15,20]. Similarly a conservation
parameter has special points corresponding to 100% con-
servation and 100% dissipation. Note that such points are
scale invariant in that they do not depend upon the chosen
scale, i.e. they are absolute rather than relative points. If
any one of these points also happens to be a critical, then
it is conceivable that the model could be placed at its crit-
ical point ‘by accident’ and thus be erroneously referred
to as ‘self-organised’ critical. It is becoming increasingly
clear that this is precisely the case is all models currently
referred to as SOC.

In summary, we have elucidated the mechanism behind
the approach to the critical point in the local Bak-Sneppen
model. The underlying feature is the existence of a hierar-
chy of timescales that become separated as a single con-
trol parameter approaches zero. We have used the insight
gained to propose a new definition of SOC that encom-
passes all cases of implicit parameter tuning observed so
far. Furthermore we have suggested that the Bak-Sneppen
model may be non-stationary. This is based on the rela-
tionship with a glass model for finite T , and suggests that
other SOC models may also exhibit interesting behaviour
far from their critical points. We welcome study of these
and related questions.

The author sincerely thanks Mike Cates and Martin Evans
for useful comments and careful reading of the manuscript,
and for correspondence with Geoff Rodgers, Kim Sneppen and
Ronald Dickman. This work was funded by EPSRC grant no.
GR/M09674.
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